JAN 1 0 1967

Reprinted from THE JOURNAL OF CHEMICAL PHYSICS, Vol. 23, No. 12, 2466-2467, December, 1955 Printed in U. S. A.

> WG55 0054 CUTL

Examination of the Expression, $T(dP/dT)_v + B$ =f(v), for a Number of High Purity Liquid Hydrocarbons

W. G. CUTLER,* W. WEBB, AND R. W. SCHIESSLER The Pennsylvania State University, University Park, Pennsylvania (Received October 3, 1955)

HE failure of the pressure coefficient, $(dP/dT)_{\tau}$, of liquids to be a function of volume alone invalidates the use of an equation of state of the Van der Waals type for liquids. A number of investigators have attempted to find a quantity that is a function of volume only. Gibson and Loeffler^{1,2} have proposed the quantity $T(dP/dT)_v + B$, where B is the Tait equation³ parameter B, and their examination of this quantity for benzene and benzene derivatives has shown it to be a function of volume alone. Eduljee, Newitt, and Weale4 have verified that the above quantity is a function of volume only for a number of normal paraffins of low molecular weight.

Volume-pressure data to 10 kilobars for a series of structurally related hydrocarbons of high purity have been determined by the High Pressure Laboratory⁵ of The Pennsylvania State University. These high purity hydrocarbons are synthetically produced by the Hydrocarbon Laboratory⁵ of the Pennsylvania State University. The experimental data have been smoothed graphically and the Tait equation has been fitted to the resulting smooth curve. The values of $(dP/dT)_v$ were obtained by measuring the slopes of

TABLE VI. Values of $T(dP/dT)_v + B$ (expressed in kilobars).

			n-Penta	lecane			
	Temp. Volumes (cc/mole)						
	(°F)	288.9	280.4	271.9	267.6	263.4	
-	140°		4.33	4.82			
	175		4.23	4.70	4.98	5.26	
	210	3.80	4.33	4.75	5.00	5.25	
	239	3.78	4.21	4.77	4.86	5.33	
	Average	3.79	4.28	4.76	4.95	5.28	
-			n-Octad	ecane			
	Temp. Volumes (cc/mole)						
	(°F)	333.4	323.2	318.1	307.9		
	175	4.13	4.77	5.20			
	210	4.11	4.69	5.02	5.94		
	239	4.13	4.60	4.19	5.78		
	Average	4.12	4.69	5.04	5.86		
		1-a	-Naphthyl	pentadecan	e		
	Temp.		Volumes (cc/mole)				
	(°F)	386.1	379.3	372.6	365.8		
-	175		5.28	5.88	6.15		
	210	5.10	5.35	5.82	6.24		
	239	5.05	5.35	5.83	6.31		
	Average	5.08	5.33	5.84	6.24		
	100 10	9(2-1	Phenylethy	l)heptadeca	ine		
	Temp.		Volu	imes (cc/m	ole)		
	(°F)	410.0	396.3	382.5	368.7	354.9	
-	140		5.42	6.44	7.17	7.79	
	175	4.75	5.46	6.34	6.99	7.90	
	210	4.76	5.47	6.36	6.95	8.13	
	239	4.76	5.50	6.06	6.86	8.27	
	Average	4.76	5.46	6.31	6.99	8.02	

FIG. 1. $\log[T(dP/dT)_{v}+B]$ versus $\log v$. Line 1: *n*-Pentadecane, Line 2: *n*-Octadecane, Line 3: 1-*a*-Naphthylpentadecane, Line 4: 9(2-Phenyl-ethyl) heptadecane.

isochores drawn from the smooth curve volume-pressure data.

Resulting values of $T(dP/dT)_v + B$ for representative compounds and volumes are shown in Table I. Although the quantity in question is not exactly constant for a given volume the deviations are believed to be within the experimental error and the data therefore support the proposal that $T(dP/dT)_{\nu}+B$ is a function of volume only.

If one plots $\log[T(dP/dT)_v+B]$ versus logv, straight lines are obtained. Figure 1 shows such a plot for four hydrocarbons. For the compounds examined, including normal paraffins, cycloparaffins, aromatics, and fused-ring compounds, and encompassing a molecular weight range of 170 to 351, the average value obtained for the slope was -3.89.

* Present address: Department of Physics, Mankato State Teachers College, Mankato, Minnesota. ¹ R. E. Gibson, and O. H. Loeffler, J. Am. Chem. Soc. 61, 2515 (1939). ² R. E. Gibson, and O. H. Loeffler, Ann. N. Y. Acad. Sci. 51, 727 (1948). ³ An empirical equation for liquids proposed by P. G. Tait in 1888. This equation states: $v_0 - v = C \log(1 + P/B)$, where v_0 is the specific volume at atmospheric pressure, v is the volume at pressure P, and C and B are con-stants for a given liquid and temperature. ⁴ Eduljee, Newitt, and Weale, J. Chem. Soc. (London) Part IV, 3086 (1951).

(1951). ⁴ Partly supported by the American Petroleum Institute and jointly known as American Petroleum Institute Research Project 42.

A. P. I. PROJECT #42 PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA.